Cyclically Indecomposable Triple Systems that are Decomposable

نویسنده

  • Martin Grüttmüller
چکیده

Cyclically Indecomposable Triple Systems that are Decomposable Martin Grüttmüller Institut für Mathematik, Universität Rostock In this talk, we construct, by using Skolem-type and Rosa-type sequences, cyclically indecomposable two-fold triple systems TS2(v) for all admissible orders. We also investigate exhaustively the cyclically indecomposable triple systems TSλ(v) for λ = 2, v ≤ 33 and λ = 3, v ≤ 21 and we identify the decomposable ones. Further, we investigate exhaustively all cyclic TS2(v) that are constructed by Skolem-type and Rosa-type sequences up to v ≤ 45 for indecomposability. Joint work with Rolf Rees and Nabil Shalaby, Memorial University of Newfoundland, Canada

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repeated blocks in indecomposable twofold triple systems

A Steiner triple system (STS) (a twofold triple system (TTS)) is a pair (V, B) where V is a v-set, and B is a collection of 3-subsets of V called blocks or triples such that every 2-subset of V is contained in exactly one [exactly two] blocks. The number v is called the order of the STS or TI'S. It is well-known that an STS of order v exists if and only if v 1 or 3 (mod 6), and a T r s of order...

متن کامل

Partially critical tournaments and partially critical supports

Given a tournament T = (V, A), with each subset X of V is associated the subtournament T [X] = (X, A∩(X×X)) of T induced by X. A subset I of V is an interval of T provided that for any a, b ∈ I and x ∈ V \I, (a, x) ∈ A if and only if (b, x) ∈ A. For example, ∅, {x}, where x ∈ V , and V are intervals of T called trivial. A tournament is indecomposable if all its intervals are trivial; otherwise,...

متن کامل

ON THE DECOMPOSITION OF xd+aexe+···+a1x+a0

Let K denote a field. A polynomial f(x) ∈ K[x] is said to be decomposable over K if f(x)= g(h(x)) for some polynomials g(x) and h(x)∈K[x] with 1< deg(h) < deg(f ). Otherwise f(x) is called indecomposable. If f(x)= g(xm) with m> 1, then f(x) is said to be trivially decomposable. In this paper, we show that xd+ax+b is indecomposable and that if e denotes the largest proper divisor of d, then xd+a...

متن کامل

r-Indecomposable and r-Nearly Decomposable Matrices

Let n, r be integers with 0 ≤ r ≤ n− 1. An n×n matrix A is called r-partly decomposable if it contains a k×l zero submatrix with k+l = n−r+1. A matrix which is not r-partly decomposable is called r-indecomposable (shortly, r-inde). Let Eij be the n × n matrix with a 1 in the (i, j) position and 0’s elsewhere. If A is r-indecomposable and, for each aij 6= 0, the matrix ∗Research supported by Nat...

متن کامل

Minimal indecomposable graphs

Let G=(V,E) be a graph, a subset X of V is an interval of G whenever for a, b E X and xE V X , (a,x)EE (resp. (x,a)EE) if and only if (b,x)EE (resp. (x,b)EE). For instance, 0, {x}, where x E V, and V are intervals of G, called trivial intervals. A graph G is then said to be indecomposable when all of its intervals are trivial. In the opposite case, we will say that G is decomposable. We now int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005